98 research outputs found

    Quantitative Analysis and Biological Efficacies regarding the Neuroprotective and Antineuroinflammatory Actions of the Herbal Formula Jodeungsan in HT22 Hippocampal Cells and BV-2 Microglia

    Get PDF
    Jodeungsan (JDS) is a traditional herbal formula that comprises seven medicinal herbs and is broadly utilized to treat hypertension, dementia, and headache. However, the effects of JDS and its herbal components on neurodegenerative diseases have not been reported. We examined the inhibitory effects of JDS and its seven components on neuronal cell death and inflammation using HT22 hippocampal cells and BV-2 microglia, respectively. Among its seven herbal components, Uncaria sinensis (US), Chrysanthemum morifolium (CM), Zingiber officinale (ZO), Pinellia ternata (PT), Citrus unshiu (CU), and Poria cocos (PC) exhibited significant neuroprotective effects in HT22 cells. In BV-2 cells, JDS significantly suppressed the production of tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6), indicating the antineuroinflammatory activity of JDS. In addition, the herbal extracts from ZO, Panax ginseng (PG), PT, CU, and PC exhibited inhibitory effects on the inflammatory response in microglia. These data imply that the JDS effect on neurodegeneration occurs via coordination among its seven components. To establish a quality control for JDS, a simultaneous analysis using five standard compounds identified hesperidin (37.892±1.228 mg/g) as the most abundant phytochemical of JDS. Further investigation of the combinatorial activities of two or more standard compounds will be necessary to verify their antineurodegenerative regulatory mechanisms

    Pogostemon cablin as ROS Scavenger in Oxidant-induced Cell Death of Human Neuroglioma Cells

    Get PDF
    Reactive oxygen species (ROS) have been implicated in the pathogenesis of a wide range of acute and long-term neurodegenerative diseases. This study was undertaken to examine the efficacy of Pogostemon cablin, a well-known herb in Korean traditional medicine, on ROS-induced brain cell injury. Pogostemon cablin effectively protected human neuroglioma cell line A172 against both the necrotic and apoptotic cell death induced by hydrogen peroxide (H2O2). The effect of Pogostemon cablin was dose dependent at concentrations ranging from 0.2 to 5 mg ml−1. Pogostemon cablin significantly prevented depletion of cellular ATP and activation of poly ADP-ribose polymerase induced by H2O2. The preservation of functional integrity of mitochondria upon the treatment of Pogostemon cablin was also confirmed by 3-(4,5-dimethyl-2-thiazyl)-2,5-diphenyl-2-H-tetrazolium bromide assay. Furthermore, Pogostemon cablin significantly prevented H2O2-induced release of cytochrome c into cytosol. Determination of intracellular ROS showed that Pogostemon cablin might exert its role as a powerful scavenger of intracellular ROS. The present study suggests the beneficial effect of Pogostemon cablin on ROS-induced neuroglial cell injury. The action of Pogostemon cablin as a ROS-scavenger might underlie the mechanism

    Genetic Approach to Elucidation of Sasang Constitutional Medicine

    Get PDF
    Sasang Constitutional Medicine (SCM) offers a medical principle that classifies humans into four constitution groups and guides their treatment with constitution-matched medical assistance. The principle of this traditional medicine, although requires significant scientific support, appears to suggest a genetic influence on constitution type. The relative frequency of constitution types in a population, for instance, has remained relatively constant since Jema Lee first described them from his observations. In addition, the body compartment concept of SCM appears to be related to the anterio–posterior patterning of the embryonic gut and associated internal organs. This study describes the attributes of the constitution concept of SCM that can be interpreted in the language of genetics and current approaches to identity the genetic factors that make up the constitution. These efforts should make it possible to interpret the principle of this traditional medicine scientifically. Considering the recent trend in medicine that pursues individualized or tailored medical offerings, once SCM is proven to be explainable with scientific evidence, it will be able to contribute to and take a place in the rapidly evolving medicine environment

    Measuring macroscopic brain connections in vivo

    Get PDF
    Decades of detailed anatomical tracer studies in non-human animals point to a rich and complex organization of long-range white matter connections in the brain. State-of-the art in vivo imaging techniques are striving to achieve a similar level of detail in humans, but multiple technical factors can limit their sensitivity and fidelity. In this review, we mostly focus on magnetic resonance imaging of the brain. We highlight some of the key challenges in analyzing and interpreting in vivo connectomics data, particularly in relation to what is known from classical neuroanatomy in laboratory animals. We further illustrate that, despite the challenges, in vivo imaging methods can be very powerful and provide information on connections that is not available by any other means

    Marginal zone B cells control the response of follicular helper T cells to a high-cholesterol diet

    Get PDF
    Splenic marginal zone B (MZB) cells, positioned at the interface between circulating blood and lymphoid tissue, detect and respond to blood-borne antigens. Here we show that MZB cells in mice activate a homeostatic program in response to a high-cholesterol diet (HCD) and regulate both the differentiation and accumulation of T follicular helper (TFH) cells. Feeding mice an HCD resulted in upregulated MZB cell surface expression of the immunoregulatory ligand PDL1 in an ATF3-dependent manner and increased the interaction between MZB cells and pre-TFH cells, leading to PDL1-mediated suppression of TFH cell motility, alteration of TFH cell differentiation, reduced TFH abundance and suppression of the proatherogenic TFH response. Our findings reveal a previously unsuspected role for MZB cells in controlling the TFH–germinal center response to a cholesterol-rich diet and uncover a PDL1-dependent mechanism through which MZB cells use their innate immune properties to limit an exaggerated adaptive immune response.This work was supported by BHF grant no. PG/15/76/31756, BHF grant no. PG/13/73/30466, ERC grant no. 2891164 and EC FP7 VIA grant no. HEALTH-F4- 2013-603131 to Z.M. and by SAF2013-45543-R from the Spanish Ministry of Economy and Competitiveness (MINECO) to J.L.d.l.P. M.N. was first supported by a Sara Borrell grant (CD09/00452) from the Instituto Nacional de Salud Carlos III (Spain) and then by a 2-year BHF Project Grant. M.N. has also received funding from the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme (FP7/2007-2013) under REA grant agreement no. 608765. The Wellcome Trust supported the Cambridge Mouse Biochemistry Laboratory

    Differential Transcriptional Regulation of Polymorphic p53 Codon 72 in Metabolic Pathways

    No full text
    p53 is a transcription factor that is activated under DNA damage stress and regulates the expression of proapoptotic genes including the expression of growth arrest genes to subsequently determine the fate of cells. To investigate the functional differences of polymorphic p53 codon 72, we constructed isogenic lines encoding each polymorphic p53 codon 72 based on induced pluripotent stem cells, which can endogenously express each polymorphic p53 protein only, encoding either the arginine 72 (R72) variant or proline 72 (P72) variant, respectively. We found that there was no significant functional difference between P72 and R72 cells in growth arrest or apoptosis as a representative function of p53. In the comprehensive analysis, the expression pattern of the common p53 target genes, including cell cycle arrest or apoptosis, was also increased regardless of the polymorphic p53 codon 72 status, whereas the expression pattern involved in metabolism was decreased and more significant in R72 than in P72 cells. This study noted that polymorphic p53 codon 72 differentially regulated the functional categories of metabolism and not the pathways that determine cell fate, such as growth arrest and apoptosis in cells exposed to genotoxic stress

    Quantifying measurement: the tyranny of numbers

    No full text
    Measurements and experiments are made each and every day, in fields as disparate as particle physics, chemistry, economics and medicine, but have you ever wondered why it is that a particular experiment has been designed to be the way it is. Indeed, how do you design an experiment to measure something whose value is unknown, and what should your considerations be on deciding whether an experiment has yielded the sought after, or indeed any useful result? These are old questions, and they are the reason behind this volume. We will explore the origins of the methods of data analysis that are today routinely applied to all measurements, but which were unknown before the mid-19th Century. Anyone who is interested in the relationship between the precision and accuracy of measurements will find this volume useful. Whether you are a physicist, a chemist, a social scientist, or a student studying one of these subjects, you will discover that the basis of measurement is the struggle to identify the needle of useful data hidden in the haystack of obscuring background noise

    Elimination of Teratogenic Human Induced Pluripotent Stem Cells by Bee Venom via Calcium-Calpain Pathway

    No full text
    Induced pluripotent stem cells (iPSCs) are regarded as a promising option for cell-based regenerative medicine. To obtain safe and efficient iPSC-based cell products, it is necessary to selectively eliminate the residual iPSCs prior to in vivo implantation due to the risk of teratoma formation. Bee venom (BV) has long been used in traditional Chinese medicine to treat inflammatory diseases and relieve pain, and has been shown to exhibit anti-cancer, anti-mutagenic, anti-nociceptive, and radioprotective activities. However, the potential benefits of BV in iPSC therapy, particularly its anti-teratoma activity, have not been examined. In this study, we found that BV selectively induced cell death in iPSCs, but not in iPSC-derived differentiated cells (iPSCs-Diff). BV rapidly disrupted cell membrane integrity and focal adhesions, followed by induction of apoptosis and necroptosis in iPSCs. We also found that BV remarkably enhanced intracellular calcium levels, calpain activation, and reactive oxygen speciesgeneration in iPSCs. BV treatment before in ovo grafting efficiently prevented iPSC-derived teratoma formation. In contrast, no DNA damage was observed in iPSCs-Diff following BV treatment, further demonstrating the safety of BV for use with iPSCs-Diff. Taken together, these findings show that BV has potent anti-teratoma activity by eliminating residual iPSCs, and can be used for the development of effective and safe iPSC-based cell therapies
    • …
    corecore